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Società Italiana di Fisica
Springer-Verlag 2002

Electric Nusselt number characterization of electroconvection
in nematic liquid crystals

J.T. Gleeson1, N. Gheorghiu1, and E. Plaut2,a

1 Department of Physics, Kent State University, Kent, OH 44242 USA
2 LEMTA, INPL - UHP - CNRS, 2 avenue de la Forêt de Haye, 54504 Vandœuvre Cedex, France

Received 21 January 2001 and Received in final form 1st February 2002

Abstract. We develop a characterization method of electroconvection structures in a planar nematic liquid
crystal layer by a study of the electric current transport. Because the applied potential difference has a
sinusoidal time dependence, we define two electric Nusselt numbers corresponding to the in-phase and
out-of-phase components of the current. These Nusselt numbers are predicted theoretically using a weakly
nonlinear analysis of the standard model. Our measurements of the electric current confirm that both num-
bers vary linearly with the distance from onset until the occurence of secondary transitions. A systematic
comparison between our theoretical and experimental results, using no adjusted parameters, demonstrates
moderate agreement, but discrepancies remain. Electric transport measurements during electroconvection
represent a quantitative test of the standard model completely independent from optical probes. Thus, the
technique described here can be a useful complement to traditional structural measurements.

PACS. 47.54.+r Pattern selection; pattern formation – 61.30.-v Liquid crystals – 47.20.Ky Nonlinearity
(including bifurcation theory)

1 Introduction

Pattern formation within structureless environments per-
vades nature, and in order to develop a better understand-
ing of these phenomena well-controlled experimental sys-
tems exhibiting pattern formation are extensively studied.
Among these, thermoconvection of a layer of fluid heated
from below [1] and electroconvection of a nematic liquid
crystal layer [2,3] are particularly interesting since they
allow very large aspect ratio geometries. In both systems,
convection structures form spontaneously when the ap-
plied stress, i.e. the gradient of either the temperature or
the electric potential, exceeds a critical value. These in-
herently non-equilibrium structures can only persist when
there is an energy source to overcome the dissipation asso-
ciated with the flow. Therefore, energy transport studies
represent a particularly valuable technique for elucidating
the mechanisms that lead to these patterns. For exam-
ple, the first accurate determination of the stress neces-
sary to induce thermoconvection was made by measuring
the heating power required to sustain a desired tempera-
ture difference across a thin layer of water [4]. This power
is customarily expressed as the Nusselt number, defined
as the heat flow across a fluid layer relative to the heat
flow required in the absence of fluid flow. Nusselt number
measurements remain a method of choice for studies not
only of the structured states that occur during thermocon-
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vection when the stress is only slightly above its critical
value [5] but also of the turbulent flow that occurs when
the stress is enormous [6]. By contrast, until recently the
electroconvection of a planar nematic liquid crystal layer,
which represents a similar but fully anisotropic model pat-
tern forming system, has been studied only with qualita-
tive or semi-quantitative optical techniques, which become
fully quantitative in the vicinity of the threshold only [7].
We propose in this work, following the pioneering stud-
ies [8–10] and the more recent experiments [11,12], to use
instead global electric flow measurements as a characteri-
zation method. In addition to the connection with energy
dissipation (see (5)), the interest of such measurements is
that they can be very precise, regardless of how compli-
cated the spatio-temporal convective structures may be.
Thus energy transport measurements open the way to
a better characterization of the various chaotic or tur-
bulent regimes that occur in electroconvection and are
still not completely understood, see e.g. [13,14]. One defi-
ciency of the existing studies of global electric flow is the
absence of comparison between experiments and theory.
The aim of this work is to fill this gap by focusing on
the weakly nonlinear regime close to the onset of convec-
tion, where stationary convective structures develop, and
consequently a quantitative comparison becomes possible.

Electroconvection is obtained when an a.c. electric po-
tential,

√
2V cos(ωt), is applied to two horizontal (⊥ ẑ)

electrodes separated by distance d confining a nematic
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liquid crystal. Here we focus on the planar anchoring case
where the director field n is fixed to x̂ at the confining elec-
trode plates. The instability relies on a coupling between
n, the velocity field v and the induced charge density ρe
or equivalently the induced electric potential φ, such that
the full electric field reads E =

√
2V /d [cos(ωt)ẑ− d∇φ

]
.

At moderate frequencies ω, of the order of the inverse of
the charge-diffusion time τ0 = ε⊥/σ⊥ with ε⊥ (σ⊥) the
dielectric permittivity (conductivity) perpendicular to n,
when V exceeds a critical value Vc , the instability sets in
the form of normal conduction rolls of wavevector q = qx̂ ;
at large frequencies dielectric rolls are observed [3] but we
do not consider this regime in this work. These phenom-
ena are well explained via the standard model (SM) for
electroconvection [3,10,15]. In addition to linear proper-
ties (values of Vc and q as a function of ω), the SM explains
several secondary instabilities that are experimentally ob-
served, such as the transitions to zig-zag rolls, station-
ary and oscillatory bimodal patterns and abnormal rolls
[16]. In Section 2 we will therefore present a SM theoreti-
cal analysis of the current flowing in an electroconvection
cell, and propose natural definitions for the electric Nus-
selt numbers. Our experimental methods will be described
in Section 3. The experimental and theoretical results will
be compared in Section 4.

2 Theoretical calculations

2.1 General considerations and definitions

The total current I through the nematic cell enclosed by
the horizontal electrodes of area S can be calculated as the
circulation of the magnetic field H. From the Maxwell-
Ampère equation, ∇ × H = j + ∂tD, I is sum of the
conduction and displacement currents:

I =
∫∫

S

(
jz + ∂tDz

)
dx dy (1)

where, within the SM, j = σ⊥E + σa(n · E)n + ρev ;
D = ε⊥E + εa(n · E)n ; σa = σ‖ − σ⊥ and εa = ε‖ −
ε⊥ with σ‖ (ε‖) the conductivity (dielectric permittivity)
parallel to n. Note that the surface integral in (1) does
not depend on the z-value (−d/2 ≤ z ≤ d/2) chosen,
because of the Maxwell-Ampère equation. In the quiescent
(no convection) state n = x̂, v = 0 and φ = 0, therefore

I = I0 = I0
r cos(ωt)− I0

i sin(ωt)

=
√

2V S
d

[σ⊥ cos(ωt)− ε⊥ω sin(ωt)]. (2)

In the convecting state all fields n,v and φ are modified,
as is I. Within the SM, for homogeneous stationary roll
solutions

I = Ir cos(ωt)− Ii sin(ωt) + higher temporal harmonics
(3)

where the amplitudes of the higher temporal harmonics
are expected to be much smaller than Ir and Ii, at least

at moderate frequencies [17]. We define the real and imag-
inary reduced Nusselt numbers as

Nr =
Ir
I0
r

− 1 and Ni =
Ii
I0
i

− 1, (4)

respectively. Thus Nr = Ni = 0 in the quiescent state,
while in the convecting state Nr measures the excess en-
ergy dissipation due to convection of the nematic liquid
crystal, that is the time average〈√

2V cos(ωt)I(t)
〉
t

= (1 +Nr)V 2σ⊥S/d. (5)

In heuristic terms the effective conductivity of the nematic
layer is changed by convection from σ⊥ to σ⊥(1 + Nr);
equivalently the imaginary Nusselt number measures the
change in the effective permittivity of the nematic layer,
ε⊥ in the quiescent state, ε⊥(1 + Ni) in the convecting
state.

2.2 Weakly nonlinear regime

When the reduced distance from onset ε ≡ V 2/V 2
c − 1

is small, the electric Nusselt numbers can be calculated
for roll structures using weakly nonlinear methods. Assum-
ing that the leading convection amplitude, A, associated
with the critical roll mode, remains small, a systematic
expansion in powers of A is performed. After adiabatic
elimination of the slave modes and calculation of the cor-
responding amplitude equation, an approximate roll solu-
tion is obtained together with the relation A(ε) = a

√
ε .

The current can then be calculated from (1). For sym-
metry reasons the first contribution from the convec-
tion modes comes at order A2, and therefore one expects
Nr = nrA

2 = nra
2ε , Ni = niA

2 = nia
2ε in the weakly

nonlinear regime. That is, Nusselt numbers allow a direct
measurement of the convection amplitude A, and there-
fore a test of the supercritical law A(ε) = a

√
ε . On the

other hand, the signs and the relative magnitude of Nr
and Ni are only controlled by the form of the critical roll
mode, no matter the value of a.

In order to obtain approximate, unscaled analytic for-
mulae demonstrating the various contributions to the
Nusselt numbers, we can use the quasi-unidimensional ap-
proximation. The analytic results thus obtained are use-
ful for illustrative purposes; the sophisticated numerical
techniques used to calculate Nusselt numbers to compare
with experiments will be described subsequently. In the
quasi-unidimensional approximation, all fields are consid-
ered at the middle of the layer (z = 0) and only their
x-dependence is kept. The critical normal roll mode then
assumes the form

nz = −ANz sin(qx), vz =
A

qτ0
Vz cos(qx),

φ =
A

qd
[Φc cos(ωt) + Φs sin(ωt)] cos(qx), (6)

where q ' π/d and, as in the rest of our theoretical cal-
culations, we only keep the lowest nontrivial time-mode
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for each field. We also choose as a normalization condi-
tion Nz = 1; then Vz , Φc and Φs are calculated at fixed
frequency by solving the neutral stability eigenvalue prob-
lem (Appendix A). With ρe = ∇ ·D, jz + ∂tDz can be
calculated at z = 0. Keeping only the horizontally homo-
geneous terms because of the surface integral in (1), one
obtains to lowest order in A:

Nr '
A2

2

[
σ′aNz(Nz − Φc) + ε′‖ΦcVz − ε′aNz(Vz + ωτ0Φs)

]
,

(7)

Ni '
A2

2

[
ε′aNz(Nz − Φc) +

Φs
ωτ0

(σ′aNz − ε′‖Vz)
]

(8)

with σ′i = σi/σ⊥ and ε′i = εi/ε⊥ for i = a or ‖. For stan-
dard nematic materials with large positive σ′a (see e.g.
(10)), the leading term inNr (7) is the anisotropic conduc-
tion term in σ′aN2

z , which imposes a positive value of Nr .
One thus expects that the tilt of the director out of the
plane in roll structures will enhance the electrical conduc-
tion of the layer and finally the in-phase current. Concern-
ing Ni (8) it should be noted that Φs/ω tends to a finite
positive value when ω → 0 (see Eq. (A.1)). Two terms of
(8) control the sign of Ni. The first term in ε′aN

2
z reveals

a diminution of the effective capacitance of the cell due
to the director tilt, since the dielectric anisotropy ε′a of
the nematic materials used in electroconvection is usually
negative. The other important contribution is the posi-
tive term in σ′aNzΦs/ω, which expresses that the potential
modulation induced by the convection creates by coupling
with the director tilt an out-of-phase current Ii > 0 (see
Eq. (3)). Since Φs/ω decreases with ω, this positive term
can compensate the negative term in ε′aN2

z at low frequen-
cies only, and for nematics with large σ′a.

In order to numerically compute precise values of
Nr and Ni, we use an improved version of the Fourier-
Galerkin code developed in [16] to calculate weakly
nonlinear roll solutions fulfilling the realistic boundary
conditions

n = x̂ , v = 0, φ = 0 at z = ±d/2.
Fourier series are still used in the x and y directions,
whereas combinations of Tchebyshev polynomials are now
used to expand the z-dependence of all fields to acceler-
ate the convergence (typically 6 z-modes were sufficient).
A procedure has been written to calculate the Nusselt
numbers. The current (1) is evaluated at the lower plate
z = −d/2 where, because of the boundary conditions,
jz + ∂tDz reduces to (σ⊥ + ε⊥∂t)Ez . Thus

I = I0 −
√

2V
∫∫

S

(σ⊥ + ε⊥∂t)∂zφ dx dy (9)

where the spatial average selects the contribution of the
potential φ of the homogeneous quadratic slave mode
noted A2V2(q,−q) in equation (27) of [16]. We will return
to the numerical results [18] (Fig. 3), which confirm the
trends found from the analytic formulae equations (7, 8),
after presenting our experimental results.

3 Experimental methods

We use an arrangement based on a pre-fabricated liquid
crystal cell [19] which has etched electrodes, so that within
the active area there is nothing besides the liquid crys-
tal itself. Cells constructed without such electrode etching
contain spacers (to maintain the separation d) and often
adhesive within the current’s path. These components nec-
essarily induce unpredictable and poorly controlled con-
tributions to the measured electric current. For example,
we estimate the use of Mylar spacers without etched elec-
trodes can alter Ii by as much as 30% [20]. Moreover,
the presence of spacers and/or adhesive in the current
path must result in a distortion of the nematic director
in the vicinity of these objects. This distortion will not
only cause the (real) measured quiescent current to devi-
ate from V/R⊥, but will also lead to rounding of the tran-
sition. So, although one may always measure the current
no matter what the sample cell construction, extracting
the Nusselt numbers, and observing a sharp transition in
this quantity, is simply not possible without the use of
etched electrodes such as in the present experiment.

In our cells, the electrodes are separated by
d = 22.3 ± 0.5 µm. Before the cell is filled, we mea-
sure, using an auto-balancing 1 kHz bridge, the capaci-
tance of the cell in order to determine accurately (within
8 ppm) the ratio S/d (nominally S = 10 mm×10 mm). Af-
ter this measurement the nematic liquid crystal methoxy-
benzylidene butyl-aniline (MBBA) [21], used as received,
is introduced between the transparent conducting elec-
trodes. The filled cell is placed in a temperature controlled
housing, and then introduced between the pole faces of a
large electromagnet. As the nematic liquid crystal under-
goes the magnetically induced splay Frederiks transition,
the capacitance and conductance of the cell are monitored.
From these measurements we obtain both electric conduc-
tivities and both dielectric constants [22]. For the experi-
ments reported here, all at 25 ◦C, we find

σ⊥ = (1.5± 0.01) 10−7(Ωm)−1,

σ′a = σa/σ⊥ = 0.538± 0.002,
ε⊥ = (4.81± 0.01)ε0,

ε′a = εa/ε⊥ = −0.1180± 0.0005, (10)

with ε0 the vacuum dielectric permittivity, which gives
τ0 = ε⊥/σ⊥ = (2.84 ± 0.03) 10−4 s. After these mea-
surements, the nematic cell is transferred to the stage of
a polarizing microscope so that shadowgraph [7] images
can be obtained concomitantly with the electric current
measurements. A function generator is used to produce a
sinusoidal voltage signal which is in turn amplified, and
applied to the cell. The path-to-ground for the current
traversing the cell is through a current-to-voltage con-
verter. The output signal from this converter is measured
by a lock-in amplifier, whose reference signal is supplied by
the original function generator. Before any measurements
are taken, the nematic cell is replaced by a purely resis-
tive load and the phase setting on the lock-in is adjusted
to zero the out-of-phase current component. The nematic
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Fig. 1. In-phase current Ir vs. the applied voltage V at a
frequency ω/(2π) = 100 Hz i.e. ωτ0 = 0.18. Inset: blowup of
the neighbourhood of Vc.

cell is then re-inserted. Then, at a selected frequency V is
raised in small steps. At each step, after waiting several
seconds, Ir and Ii are recorded [23]. This proceeds un-
til a maximum desired V (well above the threshold value
Vc) is reached. Then, the process is reversed, and the cur-
rents recorded as V decreased. The difference in current
for increasing vs. decreasing V is less than 2%. When V is
raised above Vc, the electric current traversing the liquid
crystal measurably deviates from its value in the quies-
cent state, I0. In order to determine Vc from either the
in-phase or out-of-phase current data, we first determine
a baseline for I0

r (I0
i ) by fitting a straight line to Ir (Ii) vs.

V for V much smaller than Vc; see Figure 1. These values
of I0

r /V and I0
i /V provide independent measurement of

σ⊥ and ε⊥ (see Eq. (2)) that agree within 5% with the
direct measurement of these parameters using the Fred-
eriks transition. The Nusselt numbers as functions of V
are then calculated by subtracting unity from the ratios
Ir/I

0
r and Ii/I

0
i . By fitting another straight line to Nr

(Ni) in the region where it deviates from zero, we de-
fine Vc as where this line crosses zero (see the insets in
Figs. 1 and 2). Using this technique, the imprecision in
determining Vc is about 0.2%. In the inset of Figure 2,
pretransitional effects are visible. These effects are small:
Nr remains below 0.0015 below Vc as determined using the
process described above; our accuracy in measuring Nr is
about 0.0004. Since the electric current represents an aver-
age over the entire conducting area, pretransitional effects
are expected from any and all inhomogeneities within the
conducting area, including imperfections in surface align-
ment, dust particles and fringing fields at the edge of the
conducting area. Concomitant shadowgraph observations
obtained by examining several regions within the conduct-
ing area reveal that electroconvective rolls arise at a po-
tential difference within 0.2% of Vc as determined by the
process described above.

Our apparatus did not reach sufficiently large V
to measure the crossover to the dielectric regime (see
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Fig. 2. Real and imaginary reduced Nusselt numbers vs. the
distance to threshold ε for electroconvection of MBBA at the
same frequency as in Figure 1. The arrows indicate knees ap-
parently linked with secondary instabilities (see text). Inset:
blowup of the small ε region indicating how Nr initially in-
creases linearly with ε.

e.g. [3,15]); we therefore estimated a characteristic “cut-
off” frequency ωc by fitting Vc(ω) to equation (A.3). We
found typically ωc/(2π) = 1400 ± 21 Hz, but during the
course of taking the measurements (2-3 months) this quan-
tity varied by±5%, probably in connection with variations
of the electrical parameters, especially the conductivities.

4 Experimental results - Comparison with
the theory

In Figure 2 we plot both the real and imaginary Nusselt
numbers vs. ε. For the data sets shown here, both Nusselt
numbers are positive. In general, Nr is always observed
to be positive; as discussed subsequently, Ni can be ei-
ther positive or negative above the onset of convection.
Note also that Nr is at least ten times larger in magni-
tude than Ni.

In the region below threshold, where the threshold is
found in the way specified above, the magnitude of Nr av-
erages less than 0.0005, and it never exceeds 0.0015. The
lowest value of Nr that we can reliably measure is roughly
0.0004. Thus, below threshold, Nr is as close to zero as
we can detect. At ε = 0, this quantity abruptly grows
from zero. Thus, we have a sharp, supercritical bifurca-
tion. Close to threshold, i.e. for 0 ≤ ε . 0.1, both Nusselt
numbers are proportional to ε as shown in the inset for
the real Nusselt number: this confirms the supercritical
law A ∼ √ε. The variations of the corresponding slopes
Nr/ε and Ni/ε vs. ωτ0 are given in Figure 3, which repre-
sents the results of several ramps in ε at each frequency.

To compare these results with the theoretical predic-
tions of the SM, we use, in the Fourier-Galerkin code, the
elastic constants and the viscosities measured for MBBA
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Fig. 3. Black circles: measured ratios Nr/ε and Ni/ε at small ε vs. the dimensionless frequency. Note that the measurements
span a decade in frequency. The vertical error bars correspond to the imprecision in measuring N/ε and to the dispersion
between different ε ramps, while the horizontal error bars originate from the variation in the charge-diffusion time τ0. Solid lines:
prediction from weakly nonlinear SM calculations.

at 25 ◦C in [24,25], and the electric parameters that we de-
termined independently (cf. equation (10)). We calculate,
with a fit to equation (A.3), for the “cutoff” frequency
ωc/(2π) = 1260 ± 20 Hz, in rough agreement with the
measured value. We also calculate, with the weakly non-
linear numerical code introduced Section 2.2, the values
of Nr/ε and Ni/ε (Fig. 3). The measurements of both the
real and imaginary Nusselt numbers agree with our calcu-
lations within about a factor of two; agreement for Ni is
better. Moreover, both quantities exhibit the dependence
on ωτ0 we predict, although Ni/ε crosses zero at a smaller
value of ωτ0 than predicted. The partial agreement with
theory shown here is significant in light of the fact that,
contrarily to the standard approach in nematic electro-
convection where usually σ⊥ is fitted, no parameters have
been adjusted.

Deviations from the weakly nonlinear regime are seen
in the experiments when ε becomes of order of 0.1, where
the curves of N vs. ε deviate from straight lines (Fig. 2).
The corresponding “knees” apparently indicate the on-
set of secondary instabilities. For instance, in the region
pointed by the first arrow in Figure 2, the patterns ob-
served optically show a continuous transition from nor-
mal rolls to undulated rolls; this corresponds to the un-
dulation zig-zag instability [26]. The transition seen in
the patterns and the knee on the N vs. ε curves are
both not sharp, which makes a quantitative identifica-
tion of the two secondary “thresholds” tedious. We note
also that a theoretical estimation of the undulation zig-
zag threshold [16] for our material parameters gives at
ωτ0 = 0.18, εZZ = 0.06±0.01. This appears to be smaller
than the value deduced from the first knee of Figure 2,
εZZ ' 0.10. However this type of discrepancy between ex-
perimental zigzag thresholds and the SM is well known
for MBBA, see e.g. the typical values for εZZ found re-
cently in [27]. On the other hand, optical observations

of the convective patterns shows that the knee pointed
by the second arrow in Figure 2 is probably connected
to spontaneous generation of dislocations associated with
the so-called “defect chaos” [14]. In [9], similar effects were
seen: a dramatic increase in effective conductance at the
onset of convection, as well as secondary instabilities.

5 Conclusion

One obvious reason to explain the remaining discrepan-
cies between our measurements and the SM predictions
is that we have used tabulated values of the elastic con-
stants and the anisotropic viscosities for these calcula-
tions, and that these material parameters might be dif-
ferent for our actual MBBA. However it is highly unlikely
that these factors alone could lead to the factor of two
discrepancy shown in Figure 3. Therefore we believe that
the discrepancies that we evidence reveal a shortcoming
of the SM. In fact, nematic liquid crystals are clearly elec-
trolytic conductors, i.e. the Ohmic conduction assumed in
the SM introduces an important approximation. The so-
called weak electrolyte model (WEM) has been introduced
recently as a new model in which the electrical conduc-
tivity is assumed to be due to two species of dissociated
ions having different mobilities [28]. It would be interest-
ing to develop a theoretical calculation of the electric Nus-
selt numbers within the WEM; one difficulty is that new
material parameters are then to be introduced and mea-
sured or fitted [28]. In any cases our measurements will
provide a precise, quantitative test of nematic electrocon-
vection models, both concerning the threshold voltage as
well as weakly nonlinear or strongly nonlinear properties,
including secondary instabilities. Moreover the character-
ization method developed here, always fully quantitative,
can be applied successfully to the study of the challenging
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“fully anisotropic turbulent regimes” that occur at very
large ε [13,12].
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University, the Ohio Board of Regents and NSF grant
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Appendix A: Quasi-unidimensional model

Within the quasi-unidimensional model, the critical mode
amplitudes (see Eq. (6)) read

Φc = ϕ(ω) [σ′‖σ
′
a + ε′‖ε

′
a(ωτ0)2] Nz,

Φs = ϕ(ω) (σ′‖ − ε′‖) ωτ0 Nz,

Vz = (ε‖Φc − εaNz)
τ0V

2
c

νd2
, (A.1)

where ϕ(ω) = (σ′‖)
−2[1 + (ωτ1)2]−1, τ1 = ε‖/σ‖, ν =

(α4 + α5 − α2)/2 is a characteristic viscosity, and

Vc =

√
k33νπ2

ε⊥{σ′‖σ′aν′(ω) + ε′a[α2 + ν + ε′‖ν
′(ω)(ωτ0)2]} ,

(A.2)

with k33 the bend elastic constant, ν′(ω) = −ϕ(ω)(ε′‖α2 +
ε′aν), is an estimate of the onset electrical potential. Note
that V 2

c assumes the form

V 2
c = V 2

0

1 + (ωτ1)2

ω2
c − ω2

, (A.3)

which has been used, with V0, τ1 and ωc as free parame-
ters, in order to determine the cutoff frequency ωc; indeed
such an ω-dependence is also expected within more precise
models, see e.g. the equation (3.11) of [10].
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